A damped Newton algorithm for generated Jacobian equations

نویسندگان

چکیده

Generated Jacobian Equations have been introduced by Trudinger (Discrete Contin Dyn Syst A 34(4):1663–1681, 2014) as a generalization of Monge–Ampère equations arising in optimal transport. In this paper, we introduce and study damped Newton algorithm for solving these the semi-discrete setting, meaning that one two measures involved problem is finitely supported other absolutely continuous. We also present numerical application to near-field parallel reflector non-imaging problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A damped Newton algorithm for computing viscoplastic fluid flows

For the first time, a Newton method is proposed for the unregularized viscoplastic fluid flow problem. It leads to a superlinear convergence for Herschel-Bulkley fluids when 0 < n < 1, where n is the power law index. Performances are enhanced by using the inexact variant of the Newton method and, for solving the Jacobian system, by using an efficient preconditioner based on the regularized prob...

متن کامل

On the Behavior of Damped Quasi-Newton Methods for Unconstrained Optimization

We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...

متن کامل

A quasi-Newton algorithm for large-scale nonlinear equations

In this paper, the algorithm for large-scale nonlinear equations is designed by the following steps: (i) a conjugate gradient (CG) algorithm is designed as a sub-algorithm to obtain the initial points of the main algorithm, where the sub-algorithm's initial point does not have any restrictions; (ii) a quasi-Newton algorithm with the initial points given by sub-algorithm is defined as main algor...

متن کامل

On Newton-hss Methods for Systems of Nonlinear Equations with Positive-definite Jacobian Matrices

The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally convergent iteration method for solving large sparse non-Hermitian positive definite system of linear equations. By making use of the HSS iteration as the inner solver for the Newton method, we establish a class of Newton-HSS methods for solving large sparse systems of nonlinear equations with positive definite Jacobi...

متن کامل

The preconditioned Jacobian-free Newton-Krylov methods for nonequilibrium radiation diffusion equations

In general, it is difficult to use the Newton–Krylov methods to solve the large-scale multivariable nonequilibrium reaction–diffusion systems. In this paper, by employing two new semi-implicit discretization schemes to construct the preconditioners, the preconditioned Newton–Krylov methods are presented to solve the multidimensional problems. These methods cannot only improve the number of iter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2022

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-021-02147-7